UML REFERENCE CARD E.g. Associations (relationships between classes) Implementation Inheritance
Some_class «abstract»

{author: George Jetson 1% rel ationship 1% Super d ass

modified: 10/6/2999 A A's role in B B's role in A B - void concrete();

i : : . . int ide():

© 1998 Allen I. Holub. All Rights Reserved checked_out: y Associated classes are connected by lines, +int override()
.) . . .) . * The relationship is identified, if necessary, with a <|or
Available from <http://www.holub.com>. S;t')i?g;tj zzr\]}gés;irfoéygfs'Ss'gr'é«ﬁ?gti'g:t’e \d of > to indicate direction (or use solid arrowheads). SubCl ass
d) use grap) The role that a class plays in the relationship is identi- + int override():
. . . \Xgée'ss privileges (see below) can precede nanfe fied on that class's side of the line. + int_additional ();

Static Modd Dlagr ams -« Stereotypes (like «friend») are appropriate. Outline arrows identify derivation relationships: extends,

« Inner (nested) classes identify outer class as prefix L .
of clas(s name)Quter.lnner or%uter::lnner). PTEIX . Unidirectional message flow can be indicated by animplements, is-a, has-properties-of, etc. Variations include:

. . arrow (but is implicit in situations where there is on
Packages 2. Theattributes compartment (optional): one rofe)' P Y !
» During Analysis: identify the attributes (i.e. defin; ' |
] ing characteristics) of the object. Sender [<>———3> Recei ver |

 During Design: identify a relationship to a stock - oo ==
o] - Y Java aunt class. « Cardinality: |
- This: 1 |Usualy omitted if 1:1
Appl i cation . . |
Per son n Unknown a compile time, but bound. |
Tools] N String nare; 0.1 [(1.2 1.n) N
— R nterface Inheritance
| 1.* |1ormore te
Oracle
patabase is a more compact (and less informative) version of * 0 or more User
1 this: « Example: f() { x.operation() }
Sybase -
Per son String Company rel ationship
gi ve_ne_a_rai se(Enpl oyee e) X
» C++namespace. Trame | mpl ement er I'face Name
» Group together functionally-similar classes. E hi h . vate. Al Period — operation()] =
. ; ; verything, here, is private. Always. Period. mpl oyee
II;)erll\(/ed classes needO not be |nkthe same packqge. 3 Theopiratic?ns compartFr)nent (optioneﬁ) contains L <works for 1..nbome e Eoss
 Packages can nest. Outer packages are sometimes : e _ _ enpl oyer peonf V= ©~ . . - .
calledc?omains (In the diag?am “'?’ools” is arguably method definitions. Use implementation-language _ _ In C++, an interface is a class containing nothing but pure
' ' syntax, except foaccess privileges: L. [flunkies virtual methods. Java supports them directly (c.f. “abstract

an outer package, not a domain), class,” which can contain method and field definitions in

. H R - class Conpany N ’
Package_name IS part of the class name (e.g: given the +|public { addition to the abstract declarations.)
classfred in t_h(_a flintstone package, ttfielly-qualified #| pr ot ect ed privat e Empl oyee[] peon = new Enpl oyee[n] ;
. giiserna?lmi;ilg;séoxﬁ'gsdghme static-model won't fit - |private } public void give_me_a_raise(Employee e) { ... J My extension to UML: rounded corners identify interfaces.
y - n If the full interface specification is in some other diagram, |
on one sheet. ~|package (ny extension to UM) class Empl oyee use:
. . . {
Classes (Box contains three compartments) * Abstract operations (C++ virtual, Java non-final private Company enployer; > nare) User
indicated byitalics (or underling. private Enployee boss; . . .
T « Boldface ogleration(names are()easier to read private Vector flunkies = new Vector(); Strict UML uses th&interface» stereotype in the name
ATTT1But es: ') public void you_re_fired() { ...} compartment of a standard class box:
If attributes and operations are both omitted, a more com- ! j:laft;?‘f?;&”j
Operations: plete definition is assumed to be on another sheet. (A Java Vector is a variable-length array. In this case it -
will hold Employee objects) [Gperations _
Lava, unfortunately, defaults to “packaget@ess when no modifier is present. In my Interfaces contain no atmbl'ltes’ so the attribute Compart'

. . “flavor” of UML, a missi ss privilege means “public”. ment is always empty.
1. The name compartment (required) contains the dlass’ = & Mesing access pivieg P s emply

name and other documentation-related information:

Aggregation (comprises)
[Woe fo

* Destroying the “whole” does not destroy the parts.
* Cardinality is allowed.

Composition (has) relationship

 The parts are destroyed along with the whole.
» Doesn't really exist in Java.
e In C++:

role

cl ass Cont ai ner

{

bj itemt;
Gbj *iten?;
public:

Wiole() { itenm2 = new Obj;
~Whol e(){ delete iten®;

}
}
I

Constraint

ltem

. {ordered}
role

ldentity key()

— o
Col I ection ' {or}
<>
* menber - of *
Coni ttee '?\{subset} Per son
1 chair - of *
enpl oyee enpl oyer
Comittee |+ | 0..1] Conittee
|
0..1 * I
|
boss peon !

| {person. enpl oyer ==
Person. boss. enpl oyer}

* A constrained relationship requires some rule to be
applied (e.g. {ordered}). Often combined with aggr
gation, composition, etc.

* In the case of {or}, only one of the indicated relatio
ships will exist at any given moment (a C++ union,
reference to a base class).

* {subset} does the obvious.

* In official UML, put arbitrary constraints that affect
more than one relationship in a “comment” box, as
shown. | usually leave out the box.

Qualified Association

User

add(String key,

[key
I tem val ue)

pagl_Ttem]

» Hash tables, associative arrays, etc.

class User

{
/'l A Hashtable is an associative array, indexed
/'l by sonme key and containing some val ue.
private Hashtabl e bag = new HashTabl e();

private void add(String key,
bag. put (key, val ue);

Item val ue) {

}
}

Association Class

— <travels on 5
- er son
mcarrler | passenger——
|
Ti cket
Date when; <buys
Seat where;
A rport to;
Airport from

» Use when a class is required to define a relationsh

* Somewhere, an additional relationship is required {
show ownership. (The one between person and Ti
in the current example).

Dynamic-Model (Sequence) Diagrams

Objects and M essages (new style)

Sender Recei ver
T
| [

message() .
3.
<_ ________
n- message() L
or i

o ©

rket

» Top boxes represent objects, not classes. You may|

optionally add ¥ cl ass” to the name if desired.
* Vertical lines represent the objects “life line”, or exi
ence.

* Broken lifeline indicates the object is inactive, a reg

angle indicates the object is active.
« —» represent messages being sent.
« < = - (optional if synchronous) represent method

return. (May label arrow with name/type of returned

object).

» Sending object’s class must have:
1. An association of some sort with the receiving
objects class.
2. The receiver-side class’s “role” must be the sam
the name of the receiving object.

Object Creation

L oops (extension to UML)

5t-

t-

do_it() |

Every
Recei ver

message() .

» Don't think loops, think what the loop is accomplish-
ing.

* Typically, you need to send some set of messages to
every element in some collection. Do this wattery.

* You can get more elaborate (every receiver where x<y)

e as*® The diagram above comes from:

sender _cl ass recei ver_cl ass

1 n

void do_it() voi d nessage()

recei ver

sender

Recei ver

» The new instance appears at end of creation mess
arrow.

* Destruction is accomplished by terminating the lifeli
with a large X:

new -
Recei ver
;

I
»L

><

message()

Conditions

Sender Recei ver
T

D[cond_expr] nmessage() >U

» Message sent only if conditional expression is true
» Thecond_expr is typically expressed in the imple
mentation language.

age

and maps to the following code:

class sender_cl ass
{
recei ver_class receiver[n];
public do_it() {
for(int i =0; i <n; ++i)
receiver[i].nessage();

}

NKr row Stylesfor M essages

Symbol | Type Description
—> |Simple Don't care. Usually read as the
same as synchronous.
—x |Synchronous | Sender blocks until return.
Asynchronous| Handler returns immediately and
' both sender and receiver work
simultaneously.

Asynchronous Callbacks

-Sender

message()

|
|
|
.

cal | back()

* Callback occurs while Sender is potentially executing
something else.

