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Aggregation (comprises)
[ Woe  fo

* Destroying the “whole” does not destroy the parts.
* Cardinality is allowed.

Composition (has) relationship

 The parts are destroyed along with the whole.
» Doesn't really exist in Java.
e In C++:
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* A constrained relationship requires some rule to be
applied (e.g. {ordered}). Often combined with aggr
gation, composition, etc.

* In the case of {or}, only one of the indicated relatio
ships will exist at any given moment (a C++ union,
reference to a base class).

* {subset} does the obvious.

* In official UML, put arbitrary constraints that affect
more than one relationship in a “comment” box, as
shown. | usually leave out the box.

Qualified Association

User

add(String key,

[key
I tem val ue)
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» Hash tables, associative arrays, etc.

class User

{
/'l A Hashtable is an associative array, indexed
/'l by sonme key and containing some val ue.
private Hashtabl e bag = new HashTabl e();

private void add(String key,
bag. put (key, val ue);

Item val ue) {

}
}

Association Class
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» Use when a class is required to define a relationsh

* Somewhere, an additional relationship is required {
show ownership. (The one between person and Ti
in the current example).

Dynamic-Model (Sequence) Diagrams

Objects and M essages (new style)
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T
| [

message() .
3.
<_ ________
n- message() L
or i

o ©

rket

» Top boxes represent objects, not classes. You may|

optionally add ¥ cl ass” to the name if desired.
* Vertical lines represent the objects “life line”, or exi
ence.

* Broken lifeline indicates the object is inactive, a reg

angle indicates the object is active.
« —» represent messages being sent.
« < = - (optional if synchronous) represent method

return. (May label arrow with name/type of returned

object).

» Sending object’s class must have:
1. An association of some sort with the receiving
objects class.
2. The receiver-side class’s “role” must be the sam
the name of the receiving object.

Object Creation

L oops (extension to UML)
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do_it() |

Every
Recei ver

message() .

» Don't think loops, think what the loop is accomplish-
ing.

* Typically, you need to send some set of messages to
every element in some collection. Do this wattery.

* You can get more elaborate (every receiver where x<y)

e as*® The diagram above comes from:

sender _cl ass recei ver_cl ass
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void do_it() voi d nessage()

recei ver

sender

Recei ver

» The new instance appears at end of creation mess
arrow.

* Destruction is accomplished by terminating the lifeli
with a large X:

new -
Recei ver
;

I
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message()

Conditions

Sender Recei ver
T

D[cond_expr] nmessage() >U

» Message sent only if conditional expression is true
» Thecond_expr is typically expressed in the imple
mentation language.

age

and maps to the following code:

class sender_cl ass
{
recei ver_class receiver[n];
public do_it() {
for(int i =0; i <n; ++i)
receiver[i].nessage();

}

NKr row Stylesfor M essages

Symbol | Type Description
—> |Simple Don't care. Usually read as the
same as synchronous.
—x |Synchronous | Sender blocks until return.
Asynchronous| Handler returns immediately and
' both sender and receiver work
simultaneously.

Asynchronous Callbacks

-Sender

message()

|
|
|
.

cal | back()

* Callback occurs while Sender is potentially executing
something else.



